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1. Introduction. Construction of designs by assuming a certain auto-

morphism group is a powerful method first developed extensively by R. C.
Bose. Recently the symmetric designs with v = 56, k = 1), A = 2 and v = 79,
k = 13, \ = 2 have been constructed by such methods. Examnles of this
method, including these two are given in section 2.

Sectioen 3 studies groups generated by a class C of elements of order
3 in which any two non-commu:ing elementa generate SL(2,3), Here the
four groups of order 3 in SL{2,3) may be considered a dlock of 4 points,
and the study of such groups may be related to designs with X = 4, )\ = 1,

2, Applications of groups to combinatorial designs. If designs with given

parameters exist then usually there is such a design with a non.-tr:lvia.l
group of automorphisms. Assuming the existence of a group of automorphisms
may be of great help in the construction of the design, and also simplify
the presentation of the design. The simplest case is that in vwhich n
design with v elements has a eyclic group of automorphisme of order v which
permutes the elements cyclically. In such a case we may identify the
elements with the residues modulo v, and let & : 1 « 4 + 1 (mod v) be &
generator of the automorphism group. The symmetric dlock design with
v=b=T3, rak=9, and \ = 1 is such a design. Here the clements

of one block Bl may be taken as the set

2.1) B = {1,2,4,8,16,32,37,55,64) (mod 73)
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and the mapping i + i + 1 (mod 73) maps B, into all 73 blocks. This
design is the projective plane of order 8. The fact that the residues in
2.1) do form a block of such a symmetric design is equivalent to showing
that every residue d # O (mod 73) is the difference a -8y of two
residues 8, 8 in 2.1) in exactly A = 1 ways. Thus we refer to the

set B in 2.1) as a difference set. In this example the design also has
the further automorphism u : 1 - 2i (mod 73) and we say that 2 is a
multiplier. of the difference set design. It has been proved (8] that a
difference set 815 eoey By (mod v) determining a design with parameters
b=v, r =k, and A has a multipiier p where p is a prime such that

(1) (p,v) =1, (41) plk - x and (1ii) p > A. In all known examples
condition (iii) is unnecessary, but no proof has been found which does
not use some variant of it. Elimination of condition (111) 1s a challenging,
but difficult problem.

The example given in 2.1) has a further interesting property. The
residues listed are the octic residues of the prime p = 73. This relates
difference sets to the problems of cyclotomy, and now classes of designs
based on this approach have been found by Whiteman "10] and others. It
has been noted by the writer [5] that determining cyclotomic constants 1is
equivalent to the calculation of certain group characters.

The 36 points (x,y) where x and y range independently over the
residues modulo 6 under addition form & group G of order 36. The 15

points
(1,1),(2,2),(3,3),(4,1),(5,5)
2.2) : (0,1),(0,2),(0,3),(0,%),(0,5)
(1,0),(2,0),(3,0),(4,0),(5,0)



if taken as a block Bl’ together with its ir .ges under the action of G
form a symmetric design with v s b = 36, r s k = 15, \ = 6,

There may be several orbits of points and also several orbits of
blocks under the action of the group. This is the essence of R. C.
Bose's "method of symmetrically mixed differences” [2]. For example
with 5 the additive group of residues modulo 5, we may take three orbits
of length 5 distinguishing the orbits by subscripts, having points 1‘1,
12, 13 with 4 modulo 5 to give v = 15 points. To obtain the 3teiner triple
system with v = 15, b = 35, r =« 7, k = 3, A\ = 1, the blocks fall into 7
orbits and representatives of these block crbits form "base blocks" wnich

determine the rest: A set of base blocks is

(01’12 ’uz) ’ (01922’32) ? (02’1331‘3) ’ (02 ’23’33) 3
(03’11”"1) ’ (03’21!31) » (01)02’03) o

2.3)

More recently the relationship between permutation groups and block
designs has been studied [6]. If D is & design which has an autcmorphism
group G transitive on the points of D and also on the dblocks of G, then
if we represent G as a permutation group on the points, then if H is the
stabilizer of a block Bl, clearly B1 consists of complete orbits of H.
If H {3 also the stabilizer of a point we call D an orbital design. Any
transitive permutation group will yield orbital designs which are partially
balanced block designs in the sense of Bose and Shi.mamﬁo ['3]. A case
of particular interest is the study of rank 3 groups. The theory of these
groups has been developed by D. G. Higman [9].

The group G = PSL3(1$) is the 11tt1el projective group of the plgne -

of crder 4, which contains 21 points. An oval in n is a set of 6 rorns



A | no three cn a line, and un oval is determined by any 4 of these. The
plane n contains 168 ovals which are permuted by G in three orbits of
‘ 56 ovals. Representing G as a permutation group on one set of 56

ovels, G is generated by the permutations

a = (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)
(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)
(36,37,38,39,40,41,42) (43,44 45,46 ,47,48,49)
(50,51,52,53,54,55,56)

2.4)

¢ = (1)(2,8,41)(3,27,23)(: 35.21)(5,20,53)(6,14,22)(7,k2,54)
(9,29,34)(10,52,17) (11,24,46) (12, 30,48) (13,55,33)
a0 (15,26,32)(16,21,56)(18,40,35)(19,23,49) (25,50, 44)

IR (37,51,47)(38,39,43) (45)

G is a rank 3 group in which a stabilizer has orbits of lengths 1,10,45.

The letter 1 and the orbit of length 10 in G, are

1l

2.5) B = (1,12,19,23,30,37,45,47,48,49,51}.

The set B = B1 and its images under G form a symmetric block design with

v =56, k = 11, \ = 2. This construction [7] was the first for this design.
A symmetric block design with v = 79, k = 13, \ = 2 was constructed

by Aschbacher [1] with an automorphism group G which is the Frobenius

group of order 110. We define G by

2.6) G = (x,y,z[xn=y5=z =], y lw = xh, z lxz = X 1. yz = zy).

We take B ’ 2’33‘Bh a8 base blocks and P P P3,Ph as base points. Lot

Hi be the stabilizer of Pi and G 5 be the stabilizer of B X These arn




defined by

2.7) Hy = (0¥), Hy = Hy = §,2), Hy = (2)
Gy =0, =0, Gy = o) G, = (2).
Incidence on the base blocks is defined by
Blz {‘Pl,Plz,PZG}
B, ! {Pl,Plz,PSG]
B, : {Pl,Pa,P3,Pthri,Puxuyd}
By {yax*"",p3x*5,ph,Pux*lya,puxﬂy,phxﬁy,phxﬁyl‘h

3. An application of the theory of designs to groups. The Conway group

(4] contains a class of elements of order 3 such that any two which do not

permute generate SL(2,3) of order 24, SL(2,5) of order 120 or their factor
groups by a center of order 2 which are respectively Ah and AS. It is
therefore of interest to determine those groups generated by such a class
of elements of order 3. Here the more restricted cuse is examined in
which there i8 a class of elements of order 3 in which any two elements
either commute or generate SL(2,3) or its factor group Ay

Defining relations for SL(2,3) are
3.2) a3 = b3 = avab la ™t 1.

We write a ~ b as an abbreviation for these relations. We note that if
a ~ b then a']'ba = ba.b'l 80 that a and b are conjugate. But we do not

have afl ~ b, though we do have a.'l ~b'1. Thus in 3.1) there is a distincticn

between the generators a and 2l 1

, band b of the groups (a) and (b) .¢

order 3.



s

Taking groups of order 3 such as (a) generated by an element n of
our class C as points, then we associate with SL(2,3) = {a,b) where a ~ b
a block of % points, namely {(a), (b), (e.‘lba.), (b'lab>, these being the b
conjugate subgroups of SL(2,3) and we note that X ~ y where X nnd y are
any two of s.,b,a.'lba,b'lab. Thus we have a block of size k = 4 and ) ~ 1
as any two distinct points determine the biock.
For three elements a,b,¢c of the clags ¢ in whish a ~ b, the possibilities
for G = (a,b,c) are
1. ca = ac, cb = be. Here {a,b,c) = {&,b) »x {¢).
2. ca = ac, ¢ ~b, Here |G| = 648

-lc, G has & normal subgroup H = (h,b'lhb) of exponent 3

and putting h = a
and order 27 and G/H = (a,b),
3. c~8,¢~b, ¢ ~a-]‘ba, ¢ ~ b lab.
Here |G| = 768 = 28 + 3. G has 16 subgroups conjugate to (a), and the
center of G contains (a-lb)a, (a.'lc)z, and ('b'lc)a.
L. C~8,C~b, ¢~ a'lba, ¢l b e,
These relations make G collapse s0 that G = 1.
5. c~B, e b, et a.'lba, ¢t v lan,
Here |G| = 6048 and G has 28 groups conjugate to (a).

In case 3 the 16 conjugates of (a) form the block design with v = 16,
=20, r=5, k=4, =1, the affine plane of order 4. 1In case , the
28 conjugates of () form a block design Dwith v = 28, b =63, r = 9, k = 4,
A=1. Here G = U3(3) the 3 dimensional unitary group over GF(BE). The
points may be identified with the 28 isotropic points in the projective

Plane over GF(32), and these lle in sets of 4 on 63 lines.




With 3 or more generators from ¢, unless case 5 arises, the elements
of ¢ are not conjugste tu their inverses and G has a normal subgroup of
index 3. We conaider G = (a,b,¢,d) where {a,b,c) = U3(3) as in case S5 and
¢ is a further element of C. If {r},(8), (%), {u) are one of the 63 blocks
and r;s,t,u are conjugate in (r,s), then if d does not permute with any one of
these, we have (d,r,s) a group of type 3 or type 5 above. Take X, =2,
Xy, 40 esXoq 88 generstors of the 28 groups conjugate to (&) in U3(3) and
choose the generator x; of (x,) so that x,~ & rather then x;ln- &. Then one
of the 63 vlocks r,s,t,u will conaist of four of Xye0eXyg &0d their inverses.
If 4 does not permute with any one of v,s,t,u, then in case 3 we have 4 ~ r,
dms,dnt,dmtordinr, dlns, a3 t, dluy, and incase 5, d ~ 1,
d ~8, at. t, d"1e W or scme other combination involving d twice amd a~t
twice., If we have say 4 three times and a™! once wa are in case 4 and the
group collapses. If d permutes with exactly one of r,s,t,u, say dr = rd; -
then we are in case 2 and d ~5, d ~t, d ~u or a3 s, a 1. t, a"to u.

Hence we must for each of XysevesXogs say that dx, = xid, or d ~ X, or d'1~x

i
80 that with 4 and any one of the 63 blocks r,s,t,u we avoid case 4. This

i

turns out to be a strong restriction. We summarize the results:
First case: d permutes with no one of Xyse cosXoge Two essentially
different patterns arise, Firat d may mimic the relation of some x " to the

rest, By conjugation we may take this to be x, = a and then d ~ X, all i,

1
Here d ~x;, 1 = 1, .., 28, But then from case 3 for 4 with r,s,t,u, we

have (r'ls)gd = a(r~'8)2. There are enough of these (r"l‘asl)2 50 that ((r'ls)z...\
contains a and we conclude da » ad contrary to assumption. In a second pattern
the group {(a,c,d) is in case 3 and also ((r-ls)z'--) centralizing d contnins

ace. But daca = acad together with (a,c,d) in case 3 collapses toa = o - d - I,




Hence no group arises in this firat case.

Second case: d permutes with exactly one of xl""’x28 which we take
to be X, = 8. The only permissible pattern is 4 ~ X5 1 »w2,...28. Here
putting 4 = a maps G homomorphically onto 1!.13(3). The kernel is generated
by conjugates of h = 2”3, From computer studies by J. Cannon, the kernel
presumably & 3 group, is of order at least 310 .

Third case: d permutes with exactly two generators of "1"“’*28’
say da = ad, db = bd, Then G is of order 117,573,120, as calculated by
J. Cannon. This must have Uh(3) as a factor group, and has a normal
subgroup of order 36 which will be central.

Of course a fourth case is that in which 4 permutes with all of

Xyyeees¥%yg and here G = @) x U3(3).
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